Pular para conteúdo

Função get_dataframe

Com as informações dos arquivos de namelist do SCANTEC carregados, o próximo passo é ler as tabelas geradas na avaliação com o SCANTEC e transformá-las em dataframes do Pandas. Para isso, o usuário deverá utilizar a função get_dataframe do módulo scanplot. Esta função está implementada no script data_structures.py do SCANPLOT.

Da mesma forma como foi feito com a função read_namelists, pode-se digitar o comando print(funcao.__doc__) ou simplesmente, help(funcao) para descobrir como a função deve ser utilizada:

Informação

Um dataframe é uma estrutura de dados tabulados.

1
help(scanplot.get_dataframe)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Help on function get_dataframe in module data_structures:

get_dataframe(dataInicial, dataFinal, Stats, Exps, outDir, **kwargs)
    get_dataframe
    =============

    Esta função transforma a(s) tabela(s) do SCANTEC em dataframe(s).

    Parâmetros de entrada
    ---------------------
        dataInicial : objeto datetime com a data inicial do experimento;
        dataFinal   : objeto datetime com a data final do experimento;
        Stats       : lista com os nomes das estatísticas a serem processadas;
        Exps        : lista com os nomes dos experimentos;
        outDir      : string com o diretório com as tabelas do SCANTEC.

    Parâmetros de entrada opcionais
    -------------------------------
        series : valor Booleano para ler uma série temporal das tabelas do SCANTEC:
                 * series=False (valor padrão),  as tabelas do SCANTEC geradas para a avaliação de um período;
                 * series=True,  as tabelas do SCANTEC geradas para a avaliação dos dias dentro de um período;
        tExt   : string com o extensão dos nomes das tabelas do SCANTEC:
                 * tExt='scan' (valor padrão), considera as tabelas do SCANTEC;
                 * tExt='scam', considera os nomes das tabelas das versões antigas do SCANTEC.

    Resultado
    ---------
        Dicionário com o(s) dataframe(s) com a(s) tabela(s) do SCANTEC.

    Uso
    ---
        import scanplot 

        data_vars, data_conf = scanplot.read_namelists("~/SCANTEC")

        dataInicial = data_conf["Starting Time"]
        dataFinal = data_conf["Ending Time"]
        Stats =  ["ACOR", "RMSE", "VIES"]
        Exps = list(data_conf["Experiments"].keys())
        outDir = data_conf["Output directory"]

        dTable = scanplot.get_dataframe(dataInicial,dataFinal,Stats,Exps,outDir)

A função get_dataframe recebe uma série de parâmetros de entrada e retorna um dicionário com uma ou mais tabelas que já estarão na estrutura de dataframe do Pandas. Na célula a seguir, serão definidos os valores de entrada da função get_dataframe a partir dos dicionários data_conf e data_vars, criados anteriormente.

Observe que os parâmetros Vars e Stats são atribuídos de formas diferentes dos demais. O parâmetro Stats é uma lista que deve possuir pelo menos um elemento e ele sempre deve possuir a forma Stat = [...]. Na versão atual do SCANPLOT, o usuário pode escolher as estatísticas ACOR (correlação de anomalias), RMSE (raiz do erro quadrático médio) e VIES (viés), em qualquer ordem ou combinação entre elas.

O parâmetro Vars também é uma lista, mas é definido de forma diferente. O usuário deve observar que no dicionário data_vars, para cada índice está associada uma tupla do tipo ('VAR:LEV', 'Nome da Variável @ Nível hPa [unidade]'). Isto foi feito para facilitar ao usuário a escolha da variável, pois ao invés de se digitar o nome da variável, basta escolher pelo menos um dos índices do dicionário data_vars que deseja, da seguinte forma Vars = list(map(data_vars.get,[1,2,3,...].

Informação

Uma tupla é uma estrutura de dados imutável que pode armazenar vários elementos.

1
2
3
4
5
6
7
dataInicial = data_conf['Starting Time']
dataFinal = data_conf['Ending Time']
Vars = list(map(data_vars.get,[11,12,13]))
Stats = ['ACOR', 'RMSE', 'VIES']
Exps = list(data_conf['Experiments'].keys())
outDir = data_conf['Output directory']
figDir = outDir + '/figs'

Nota

No exemplo acima, o parâmetro outDir considera o valor que consta no arquivo scantec.conf. Para uso com os arquivos de teste (veja o diretório test na raiz da instalação do SCANPLOT), considere alterar o valor deste parâmetro para que o SCANPLOT possa encontrar os arquivos de teste que estão dentro da sua cópia local do SCANPLOT:

outDir = '/algum/local/SCANPLOT/test/SCANTEC.TESTS/dataout'

Dica

Os comandos:

Vars = list(map(data_vars.get,[11,12,13]))
Exps = list(data_conf['Experiments'].keys())

podem ser substituídos, respectivamente, por:

Vars = [*map(data_vars.get,[12,14])]
Exps = [*data_conf["Experiments"].keys()]

Com a definição dos parâmetros de entrada da função get_dataframe, a sua utilização é feita da seguinte forma:

1
2
dTable = scanplot.get_dataframe(dataInicial, dataFinal, Stats, 
                                Exps, outDir, series=False)

Na chamada da função get_dataframe, o objeto dTable é um dicionário que deverá conter as tabelas escolhidas pelo usuário a partir do ajuste dos parâmetros de entrada da função. Para inspecionar o conteúdo do dicionário dTable, basta digitar no prompt:

1
dTable
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
{'ACORX126_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0     0.999     0.997     1.000     0.999     0.250     0.154   
 1          24     0.981     0.986     0.997     0.992     0.228     0.137   
 2          48     0.964     0.978     0.994     0.985     0.216     0.123   
 3          72     0.937     0.968     0.989     0.977     0.203     0.108   
 4          96     0.906     0.959     0.983     0.968     0.196     0.098   
 5         120     0.868     0.949     0.976     0.958     0.190     0.090   
 6         144     0.829     0.942     0.970     0.950     0.187     0.085   
 7         168     0.791     0.934     0.964     0.942     0.184     0.081   
 8         192     0.753     0.929     0.958     0.936     0.182     0.077   
 9         216     0.718     0.924     0.953     0.930     0.182     0.076   
 10        240     0.691     0.921     0.949     0.926     0.179     0.075   
 11        264     0.672     0.918     0.946     0.923     0.177     0.074   
 12        288     0.660     0.916     0.944     0.919     0.176     0.072   
 13        312     0.648     0.915     0.941     0.917     0.177     0.071   
 14        336     0.632     0.912     0.939     0.915     0.177     0.071   
 15        360     0.624     0.911     0.937     0.914     0.177     0.071   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0      0.071     0.997     1.000     1.000     1.000     0.991     0.997   
 1      0.069     0.984     0.996     0.999     1.000     0.923     0.970   
 2      0.064     0.964     0.990     0.997     0.998     0.888     0.943   
 3      0.059     0.941     0.979     0.994     0.996     0.840     0.906   
 4      0.053     0.917     0.965     0.988     0.993     0.787     0.860   
 5      0.047     0.896     0.947     0.982     0.988     0.734     0.809   
 6      0.042     0.878     0.928     0.974     0.984     0.683     0.758   
 7      0.037     0.862     0.909     0.967     0.979     0.637     0.710   
 8      0.033     0.849     0.890     0.960     0.974     0.595     0.668   
 9      0.029     0.838     0.871     0.953     0.970     0.560     0.630   
 10     0.027     0.827     0.857     0.947     0.966     0.534     0.597   
 11     0.024     0.819     0.846     0.943     0.964     0.518     0.575   
 12     0.022     0.812     0.840     0.940     0.962     0.502     0.554   
 13     0.021     0.806     0.833     0.938     0.960     0.488     0.537   
 14     0.019     0.800     0.825     0.934     0.958     0.476     0.525   
 15     0.019     0.794     0.820     0.932     0.956     0.469     0.514   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0      0.998     0.984     0.995     0.997  
 1      0.979     0.871     0.948     0.958  
 2      0.955     0.806     0.897     0.908  
 3      0.922     0.726     0.826     0.837  
 4      0.882     0.629     0.733     0.743  
 5      0.838     0.532     0.626     0.638  
 6      0.795     0.444     0.520     0.534  
 7      0.752     0.372     0.419     0.425  
 8      0.717     0.302     0.322     0.324  
 9      0.684     0.243     0.235     0.234  
 10     0.654     0.200     0.168     0.163  
 11     0.633     0.173     0.130     0.123  
 12     0.613     0.158     0.104     0.100  
 13     0.598     0.146     0.091     0.088  
 14     0.588     0.129     0.067     0.073  
 15     0.578     0.118     0.054     0.060  ,
 'ACORXENM_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0     0.999     0.996     1.000     0.999     0.246     0.150   
 1          24     0.983     0.988     0.997     0.990     0.226     0.134   
 2          48     0.965     0.980     0.994     0.982     0.215     0.121   
 3          72     0.938     0.970     0.989     0.973     0.203     0.107   
 4          96     0.907     0.961     0.984     0.964     0.195     0.097   
 5         120     0.872     0.953     0.978     0.956     0.190     0.090   
 6         144     0.838     0.946     0.973     0.949     0.188     0.085   
 7         168     0.805     0.941     0.968     0.943     0.185     0.081   
 8         192     0.773     0.936     0.964     0.938     0.184     0.077   
 9         216     0.745     0.933     0.960     0.934     0.184     0.076   
 10        240     0.726     0.931     0.958     0.931     0.181     0.076   
 11        264     0.713     0.930     0.957     0.929     0.179     0.075   
 12        288     0.705     0.929     0.955     0.927     0.178     0.074   
 13        312     0.697     0.929     0.954     0.926     0.180     0.073   
 14        336     0.690     0.929     0.954     0.926     0.181     0.074   
 15        360     0.688     0.929     0.954     0.926     0.181     0.075   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0      0.053     0.995     1.000     1.000     1.000     0.991     0.997   
 1      0.051     0.982     0.996     0.999     1.000     0.931     0.969   
 2      0.050     0.964     0.990     0.997     0.998     0.897     0.942   
 3      0.047     0.944     0.979     0.994     0.996     0.852     0.906   
 4      0.044     0.924     0.965     0.989     0.993     0.802     0.863   
 5      0.040     0.906     0.950     0.982     0.989     0.754     0.818   
 6      0.037     0.890     0.934     0.976     0.985     0.711     0.776   
 7      0.034     0.878     0.917     0.970     0.980     0.673     0.735   
 8      0.031     0.868     0.901     0.964     0.976     0.638     0.701   
 9      0.029     0.859     0.888     0.959     0.973     0.612     0.672   
 10     0.027     0.852     0.878     0.955     0.970     0.594     0.649   
 11     0.025     0.845     0.872     0.953     0.969     0.582     0.633   
 12     0.023     0.839     0.869     0.951     0.967     0.571     0.621   
 13     0.023     0.834     0.865     0.949     0.966     0.563     0.611   
 14     0.021     0.830     0.861     0.948     0.966     0.557     0.607   
 15     0.020     0.826     0.860     0.948     0.965     0.555     0.607   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0      0.998     0.984     0.995     0.997  
 1      0.977     0.881     0.946     0.956  
 2      0.953     0.819     0.894     0.905  
 3      0.921     0.743     0.825     0.835  
 4      0.884     0.648     0.733     0.744  
 5      0.846     0.559     0.634     0.645  
 6      0.810     0.475     0.537     0.548  
 7      0.774     0.405     0.444     0.448  
 8      0.744     0.344     0.354     0.352  
 9      0.719     0.291     0.277     0.270  
 10     0.698     0.253     0.215     0.206  
 11     0.682     0.226     0.175     0.167  
 12     0.669     0.213     0.144     0.139  
 13     0.661     0.204     0.119     0.112  
 14     0.656     0.198     0.102     0.094  
 15     0.655     0.191     0.094     0.086  ,
 'ACORT126_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0     0.999     0.997     1.000     0.999     0.249     0.154   
 1          24     0.984     0.989     0.997     0.992     0.235     0.138   
 2          48     0.972     0.984     0.994     0.986     0.228     0.125   
 3          72     0.951     0.978     0.990     0.978     0.218     0.113   
 4          96     0.922     0.972     0.984     0.970     0.212     0.105   
 5         120     0.888     0.965     0.978     0.962     0.207     0.099   
 6         144     0.852     0.959     0.972     0.955     0.205     0.095   
 7         168     0.818     0.953     0.966     0.949     0.205     0.092   
 8         192     0.784     0.947     0.960     0.943     0.204     0.089   
 9         216     0.754     0.943     0.956     0.939     0.204     0.088   
 10        240     0.729     0.940     0.952     0.935     0.202     0.086   
 11        264     0.711     0.937     0.949     0.932     0.200     0.085   
 12        288     0.697     0.935     0.946     0.930     0.199     0.084   
 13        312     0.687     0.934     0.945     0.928     0.199     0.082   
 14        336     0.675     0.932     0.943     0.928     0.200     0.083   
 15        360     0.666     0.930     0.942     0.927     0.199     0.083   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0      0.071     0.996     1.000     1.000     1.000     0.992     0.997   
 1      0.069     0.985     0.996     0.999     1.000     0.928     0.970   
 2      0.065     0.970     0.991     0.998     0.999     0.895     0.944   
 3      0.060     0.955     0.981     0.994     0.997     0.855     0.910   
 4      0.056     0.940     0.967     0.989     0.994     0.810     0.867   
 5      0.052     0.927     0.951     0.983     0.990     0.764     0.821   
 6      0.048     0.915     0.934     0.976     0.985     0.719     0.774   
 7      0.045     0.906     0.917     0.969     0.981     0.680     0.729   
 8      0.043     0.898     0.900     0.963     0.976     0.644     0.690   
 9      0.040     0.891     0.885     0.957     0.973     0.613     0.656   
 10     0.039     0.887     0.872     0.952     0.970     0.589     0.628   
 11     0.038     0.883     0.864     0.948     0.967     0.571     0.605   
 12     0.037     0.879     0.858     0.946     0.965     0.556     0.584   
 13     0.036     0.876     0.854     0.944     0.964     0.546     0.572   
 14     0.035     0.873     0.848     0.942     0.962     0.537     0.560   
 15     0.034     0.870     0.843     0.939     0.961     0.527     0.545   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0      0.998     0.986     0.995     0.997  
 1      0.979     0.881     0.948     0.959  
 2      0.957     0.819     0.900     0.912  
 3      0.928     0.747     0.832     0.845  
 4      0.893     0.659     0.741     0.756  
 5      0.856     0.568     0.636     0.656  
 6      0.820     0.482     0.533     0.556  
 7      0.782     0.413     0.433     0.450  
 8      0.751     0.352     0.343     0.351  
 9      0.723     0.298     0.270     0.272  
 10     0.699     0.255     0.213     0.211  
 11     0.680     0.219     0.166     0.168  
 12     0.660     0.196     0.132     0.130  
 13     0.648     0.189     0.114     0.108  
 14     0.638     0.175     0.093     0.085  
 15     0.627     0.164     0.072     0.062  ,
 'ACORTENM_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0     0.999     0.996     1.000     0.999     0.246     0.150   
 1          24     0.986     0.990     0.997     0.990     0.232     0.135   
 2          48     0.972     0.985     0.994     0.983     0.226     0.124   
 3          72     0.950     0.980     0.990     0.975     0.216     0.111   
 4          96     0.922     0.974     0.984     0.967     0.211     0.103   
 5         120     0.891     0.967     0.979     0.960     0.206     0.098   
 6         144     0.860     0.963     0.974     0.954     0.204     0.094   
 7         168     0.831     0.958     0.970     0.950     0.204     0.092   
 8         192     0.804     0.955     0.966     0.946     0.204     0.089   
 9         216     0.780     0.952     0.963     0.943     0.205     0.087   
 10        240     0.762     0.950     0.962     0.941     0.203     0.086   
 11        264     0.750     0.949     0.960     0.939     0.202     0.085   
 12        288     0.743     0.948     0.959     0.938     0.201     0.085   
 13        312     0.735     0.948     0.958     0.938     0.201     0.085   
 14        336     0.728     0.948     0.958     0.938     0.204     0.086   
 15        360     0.727     0.947     0.958     0.938     0.204     0.087   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0      0.053     0.994     1.000     1.000     1.000     0.992     0.997   
 1      0.051     0.984     0.996     0.999     1.000     0.935     0.969   
 2      0.050     0.971     0.990     0.997     0.999     0.904     0.943   
 3      0.049     0.958     0.980     0.994     0.996     0.865     0.909   
 4      0.047     0.945     0.967     0.989     0.993     0.822     0.869   
 5      0.045     0.935     0.953     0.983     0.990     0.781     0.827   
 6      0.043     0.927     0.938     0.978     0.986     0.745     0.789   
 7      0.042     0.920     0.924     0.972     0.982     0.714     0.752   
 8      0.041     0.916     0.910     0.966     0.979     0.687     0.722   
 9      0.040     0.913     0.899     0.962     0.976     0.666     0.697   
 10     0.040     0.911     0.891     0.959     0.974     0.651     0.677   
 11     0.040     0.909     0.886     0.957     0.972     0.639     0.660   
 12     0.039     0.907     0.883     0.955     0.971     0.632     0.650   
 13     0.039     0.906     0.879     0.954     0.970     0.625     0.642   
 14     0.038     0.905     0.877     0.953     0.970     0.621     0.638   
 15     0.038     0.904     0.876     0.953     0.970     0.623     0.639   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0      0.998     0.986     0.995     0.997  
 1      0.978     0.891     0.947     0.957  
 2      0.955     0.832     0.897     0.908  
 3      0.926     0.761     0.830     0.841  
 4      0.893     0.675     0.740     0.753  
 5      0.861     0.589     0.641     0.659  
 6      0.831     0.511     0.545     0.567  
 7      0.800     0.449     0.457     0.472  
 8      0.775     0.393     0.374     0.379  
 9      0.755     0.348     0.308     0.305  
 10     0.738     0.311     0.254     0.249  
 11     0.725     0.281     0.209     0.207  
 12     0.716     0.264     0.173     0.174  
 13     0.709     0.258     0.151     0.148  
 14     0.706     0.251     0.137     0.132  
 15     0.706     0.253     0.129     0.119  ,
 'RMSEX126_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0     0.702     1.132     0.251     0.490     1.654     1.652   
 1          24     2.547     2.607     0.901     1.191     1.653     1.652   
 2          48     3.554     3.297     1.378     1.631     1.653     1.652   
 3          72     4.683     3.932     1.847     2.002     1.653     1.652   
 4          96     5.756     4.475     2.318     2.351     1.653     1.652   
 5         120     6.815     4.935     2.763     2.655     1.653     1.652   
 6         144     7.773     5.294     3.141     2.901     1.653     1.652   
 7         168     8.591     5.619     3.496     3.113     1.653     1.652   
 8         192     9.281     5.887     3.804     3.290     1.653     1.652   
 9         216     9.879     6.107     4.081     3.442     1.653     1.652   
 10        240    10.331     6.290     4.293     3.549     1.653     1.652   
 11        264    10.649     6.436     4.462     3.630     1.653     1.652   
 12        288    10.862     6.564     4.612     3.714     1.653     1.652   
 13        312    11.102     6.671     4.744     3.775     1.653     1.652   
 14        336    11.437     6.788     4.846     3.831     1.653     1.652   
 15        360    11.645     6.883     4.924     3.860     1.653     1.652   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0       1.65     1.376     2.837     2.466     4.236     1.144     0.929   
 1       1.65     2.991    13.869    15.497    18.265     3.342     2.888   
 2       1.65     4.400    21.591    29.092    36.514     4.069     3.974   
 3       1.65     5.604    30.360    42.508    55.440     4.875     5.076   
 4       1.65     6.614    39.356    56.192    74.851     5.638     6.175   
 5       1.65     7.415    48.222    69.503    93.510     6.318     7.200   
 6       1.65     8.033    56.414    81.561   110.184     6.900     8.078   
 7       1.65     8.518    63.433    92.237   125.439     7.406     8.839   
 8       1.65     8.904    69.568   101.652   138.942     7.831     9.444   
 9       1.65     9.249    74.934   109.955   150.873     8.169     9.948   
 10      1.65     9.543    79.032   116.618   160.514     8.409    10.366   
 11      1.65     9.771    81.881   121.264   167.531     8.547    10.639   
 12      1.65     9.965    83.762   124.726   173.217     8.701    10.896   
 13      1.65    10.146    85.793   127.973   178.334     8.831    11.108   
 14      1.65    10.306    88.636   131.740   183.081     8.958    11.272   
 15      1.65    10.450    90.426   134.401   186.695     9.052    11.430   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0      1.052     1.107     0.905     1.008  
 1      3.894     3.213     2.852     3.810  
 2      5.649     3.946     3.955     5.539  
 3      7.346     4.657     5.072     7.233  
 4      8.949     5.401     6.221     8.950  
 5     10.423     6.029     7.267    10.476  
 6     11.716     6.543     8.143    11.753  
 7     12.863     6.898     8.854    12.890  
 8     13.718     7.239     9.451    13.774  
 9     14.472     7.515     9.938    14.478  
 10    15.106     7.714    10.302    15.029  
 11    15.546     7.852    10.528    15.376  
 12    15.978     7.945    10.690    15.585  
 13    16.275     8.036    10.815    15.750  
 14    16.494     8.137    10.989    15.938  
 15    16.732     8.237    11.093    16.108  ,
 'RMSEXENM_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0     0.689     1.213     0.273     0.491     1.653     1.652   
 1          24     2.380     2.407     0.932     1.814     1.653     1.652   
 2          48     3.509     3.142     1.359     2.168     1.653     1.652   
 3          72     4.646     3.784     1.774     2.436     1.653     1.652   
 4          96     5.698     4.318     2.195     2.677     1.653     1.652   
 5         120     6.639     4.754     2.572     2.888     1.653     1.652   
 6         144     7.442     5.083     2.886     3.045     1.653     1.652   
 7         168     8.116     5.359     3.184     3.182     1.653     1.652   
 8         192     8.673     5.579     3.449     3.292     1.653     1.652   
 9         216     9.115     5.754     3.657     3.383     1.653     1.652   
 10        240     9.404     5.897     3.828     3.449     1.653     1.652   
 11        264     9.570     6.006     3.952     3.493     1.653     1.652   
 12        288     9.660     6.091     4.061     3.532     1.653     1.652   
 13        312     9.792     6.166     4.143     3.559     1.653     1.652   
 14        336     9.911     6.230     4.203     3.580     1.653     1.652   
 15        360     9.941     6.279     4.237     3.592     1.653     1.652   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0       1.65     2.035     3.977     7.082     9.750     1.147     0.929   
 1       1.65     3.198    13.663    14.806    16.896     3.173     2.945   
 2       1.65     4.413    21.729    27.988    32.024     3.834     3.993   
 3       1.65     5.465    30.547    41.312    50.287     4.592     5.049   
 4       1.65     6.359    39.119    54.490    69.033     5.293     6.060   
 5       1.65     7.055    47.035    66.939    86.600     5.890     6.959   
 6       1.65     7.584    54.070    77.871   101.949     6.344     7.677   
 7       1.65     7.993    60.047    87.424   115.871     6.729     8.295   
 8       1.65     8.301    65.109    95.664   128.125     7.035     8.773   
 9       1.65     8.567    69.188   102.462   138.148     7.256     9.129   
 10      1.65     8.797    71.953   107.613   146.145     7.389     9.403   
 11      1.65     8.981    73.622   110.942   151.688     7.466     9.578   
 12      1.65     9.149    74.667   113.501   156.183     7.526     9.700   
 13      1.65     9.293    75.973   116.073   160.284     7.560     9.785   
 14      1.65     9.417    77.089   118.129   163.480     7.584     9.822   
 15      1.65     9.526    77.437   119.138   165.376     7.573     9.807   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0      1.052     1.110     0.905     1.008  
 1      4.045     3.061     2.899     3.939  
 2      5.798     3.754     3.993     5.654  
 3      7.405     4.410     5.062     7.270  
 4      8.879     5.079     6.139     8.859  
 5     10.139     5.596     7.045    10.195  
 6     11.193     5.996     7.754    11.252  
 7     12.124     6.257     8.301    12.145  
 8     12.842     6.457     8.729    12.832  
 9     13.402     6.608     9.030    13.300  
 10    13.841     6.691     9.211    13.582  
 11    14.159     6.729     9.284    13.687  
 12    14.411     6.728     9.321    13.750  
 13    14.566     6.721     9.353    13.811  
 14    14.657     6.710     9.350    13.829  
 15    14.672     6.713     9.331    13.825  ,
 'RMSET126_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0     0.709     1.099     0.251     0.489     1.654     1.652   
 1          24     2.297     2.317     0.886     1.195     1.653     1.652   
 2          48     3.095     2.728     1.318     1.619     1.653     1.652   
 3          72     4.107     3.144     1.759     1.963     1.653     1.652   
 4          96     5.160     3.565     2.201     2.281     1.653     1.652   
 5         120     6.190     3.960     2.613     2.548     1.653     1.652   
 6         144     7.128     4.286     2.963     2.766     1.653     1.652   
 7         168     7.899     4.597     3.289     2.947     1.653     1.652   
 8         192     8.571     4.857     3.564     3.098     1.653     1.652   
 9         216     9.127     5.070     3.791     3.220     1.653     1.652   
 10        240     9.582     5.239     3.985     3.305     1.653     1.652   
 11        264     9.888     5.386     4.141     3.383     1.653     1.652   
 12        288    10.133     5.507     4.276     3.449     1.653     1.652   
 13        312    10.364     5.582     4.362     3.492     1.653     1.652   
 14        336    10.682     5.663     4.415     3.514     1.653     1.652   
 15        360    10.956     5.762     4.462     3.542     1.653     1.652   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0       1.65     1.400     2.916     2.439     4.240     1.070     0.929   
 1       1.65     2.846    12.999    12.947    15.005     3.245     2.876   
 2       1.65     3.990    20.082    24.505    29.841     3.947     3.927   
 3       1.65     4.903    28.319    36.811    46.664     4.628     4.976   
 4       1.65     5.638    37.064    49.981    64.532     5.281     6.020   
 5       1.65     6.230    45.518    62.718    81.852     5.886     6.982   
 6       1.65     6.712    53.379    74.292    97.503     6.409     7.831   
 7       1.65     7.073    59.912    84.565   111.948     6.850     8.575   
 8       1.65     7.357    65.680    93.551   124.813     7.229     9.172   
 9       1.65     7.593    70.564   101.017   135.175     7.518     9.653   
 10      1.65     7.756    74.406   106.842   143.371     7.749    10.025   
 11      1.65     7.881    77.102   111.415   150.087     7.910    10.319   
 12      1.65     8.019    79.028   114.640   155.234     8.037    10.573   
 13      1.65     8.118    80.936   117.197   159.027     8.148    10.732   
 14      1.65     8.195    83.679   120.371   162.481     8.262    10.912   
 15      1.65     8.293    85.905   123.195   165.450     8.396    11.128   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0      1.051     1.049     0.905     1.007  
 1      3.845     3.088     2.831     3.756  
 2      5.477     3.806     3.905     5.431  
 3      7.063     4.467     4.996     7.073  
 4      8.549     5.160     6.137     8.750  
 5      9.887     5.770     7.185    10.244  
 6     11.090     6.277     8.062    11.508  
 7     12.184     6.646     8.792    12.657  
 8     13.028     6.947     9.375    13.593  
 9     13.716     7.216     9.794    14.243  
 10    14.301     7.427    10.115    14.732  
 11    14.732     7.605    10.400    15.127  
 12    15.165     7.736    10.616    15.451  
 13    15.406     7.778    10.742    15.626  
 14    15.634     7.857    10.864    15.805  
 15    15.881     7.929    10.987    16.006  ,
 'RMSETENM_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0     0.695     1.184     0.274     0.491     1.653     1.652   
 1          24     2.124     2.122     0.921     1.848     1.653     1.652   
 2          48     3.078     2.585     1.317     2.221     1.653     1.652   
 3          72     4.106     3.008     1.711     2.476     1.653     1.652   
 4          96     5.125     3.415     2.105     2.689     1.653     1.652   
 5         120     6.051     3.779     2.452     2.864     1.653     1.652   
 6         144     6.826     4.058     2.731     2.992     1.653     1.652   
 7         168     7.430     4.301     2.997     3.092     1.653     1.652   
 8         192     7.931     4.496     3.222     3.171     1.653     1.652   
 9         216     8.339     4.651     3.386     3.234     1.653     1.652   
 10        240     8.621     4.770     3.515     3.274     1.653     1.652   
 11        264     8.794     4.855     3.610     3.300     1.653     1.652   
 12        288     8.890     4.908     3.684     3.314     1.653     1.652   
 13        312     9.031     4.954     3.730     3.324     1.653     1.652   
 14        336     9.168     4.994     3.744     3.327     1.653     1.652   
 15        360     9.210     5.024     3.750     3.322     1.653     1.652   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0       1.65     2.056     4.049     7.086     9.773     1.074     0.929   
 1       1.65     3.060    12.920    12.760    17.639     3.058     2.937   
 2       1.65     4.022    20.344    24.080    29.467     3.720     3.957   
 3       1.65     4.810    28.691    36.333    45.110     4.379     4.974   
 4       1.65     5.437    37.075    49.078    61.990     4.989     5.938   
 5       1.65     5.913    44.770    61.116    77.984     5.510     6.787   
 6       1.65     6.271    51.464    71.507    91.820     5.897     7.469   
 7       1.65     6.517    56.781    80.400   104.543     6.213     8.066   
 8       1.65     6.682    61.257    87.847   115.442     6.457     8.507   
 9       1.65     6.786    64.878    93.729   123.759     6.639     8.840   
 10      1.65     6.864    67.403    98.075   130.035     6.748     9.090   
 11      1.65     6.932    69.072   101.179   134.588     6.827     9.281   
 12      1.65     6.996    70.069   103.339   138.112     6.859     9.382   
 13      1.65     7.017    71.393   105.361   141.083     6.893     9.456   
 14      1.65     7.041    72.598   106.875   142.908     6.911     9.495   
 15      1.65     7.068    73.002   107.607   143.768     6.883     9.466   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0      1.051     1.051     0.905     1.007  
 1      3.998     2.935     2.880     3.879  
 2      5.646     3.621     3.949     5.562  
 3      7.161     4.254     5.000     7.158  
 4      8.530     4.886     6.074     8.721  
 5      9.667     5.399     6.994    10.026  
 6     10.627     5.785     7.706    11.062  
 7     11.495     6.029     8.237    11.942  
 8     12.155     6.215     8.641    12.639  
 9     12.648     6.348     8.899    13.083  
 10    13.039     6.438     9.055    13.328  
 11    13.319     6.497     9.162    13.472  
 12    13.508     6.509     9.223    13.553  
 13    13.636     6.491     9.233    13.595  
 14    13.692     6.488     9.221    13.594  
 15    13.690     6.462     9.202    13.595  ,
 'VIESX126_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0    -0.195    -0.091     0.037     0.237     1.653     1.652   
 1          24     0.055    -1.141    -0.236     0.315     1.653     1.652   
 2          48    -0.065    -1.530    -0.467     0.300     1.653     1.652   
 3          72    -0.110    -1.801    -0.654     0.250     1.653     1.652   
 4          96    -0.127    -2.009    -0.833     0.164     1.653     1.652   
 5         120    -0.135    -2.180    -1.008     0.080     1.653     1.652   
 6         144    -0.136    -2.321    -1.180     0.010     1.653     1.652   
 7         168    -0.118    -2.442    -1.343    -0.055     1.653     1.652   
 8         192    -0.085    -2.556    -1.497    -0.133     1.653     1.652   
 9         216    -0.030    -2.666    -1.629    -0.201     1.653     1.652   
 10        240     0.026    -2.771    -1.748    -0.254     1.653     1.652   
 11        264     0.089    -2.868    -1.842    -0.300     1.653     1.652   
 12        288     0.128    -2.951    -1.913    -0.337     1.653     1.652   
 13        312     0.146    -3.023    -1.965    -0.362     1.653     1.652   
 14        336     0.152    -3.078    -2.012    -0.364     1.653     1.652   
 15        360     0.184    -3.139    -2.051    -0.362     1.653     1.652   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0       1.65    -0.039     0.002     1.480     3.245     0.002    -0.006   
 1       1.65    -0.157    -2.687    -9.471   -10.008    -0.000    -0.034   
 2       1.65    -0.256    -5.216   -17.497   -20.679    -0.085    -0.125   
 3       1.65    -0.368    -6.637   -23.107   -28.947    -0.172    -0.133   
 4       1.65    -0.465    -7.565   -27.485   -36.440    -0.252    -0.157   
 5       1.65    -0.564    -8.276   -31.297   -43.281    -0.292    -0.081   
 6       1.65    -0.651    -8.814   -34.679   -49.465    -0.320    -0.013   
 7       1.65    -0.741    -9.155   -37.503   -55.084    -0.346     0.071   
 8       1.65    -0.831    -9.326   -39.852   -60.236    -0.368     0.173   
 9       1.65    -0.920    -9.327   -41.767   -64.698    -0.377     0.255   
 10      1.65    -1.002    -9.327   -43.522   -68.554    -0.362     0.349   
 11      1.65    -1.077    -9.269   -44.974   -71.604    -0.368     0.448   
 12      1.65    -1.152    -9.340   -46.239   -74.142    -0.364     0.511   
 13      1.65    -1.223    -9.507   -47.371   -76.162    -0.353     0.594   
 14      1.65    -1.294    -9.706   -48.408   -77.750    -0.327     0.640   
 15      1.65    -1.361    -9.733   -49.137   -78.807    -0.304     0.683   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0     -0.071     0.006     0.002     0.010  
 1     -0.464    -0.068    -0.001     0.276  
 2     -0.673     0.027     0.075     0.233  
 3     -0.738    -0.018     0.028     0.187  
 4     -0.769     0.056     0.076     0.183  
 5     -0.722     0.051     0.040     0.166  
 6     -0.643     0.056     0.042     0.159  
 7     -0.525     0.007     0.028     0.203  
 8     -0.401     0.054     0.056     0.194  
 9     -0.278     0.022     0.056     0.202  
 10    -0.121     0.015     0.047     0.179  
 11     0.038     0.019     0.066     0.179  
 12     0.174     0.008     0.066     0.201  
 13     0.305     0.002     0.060     0.204  
 14     0.401    -0.015     0.046     0.235  
 15     0.492     0.006     0.058     0.221  ,
 'VIESXENM_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0    -0.179     0.049     0.061     0.240     1.653     1.652   
 1          24     0.027    -0.988    -0.093     1.260     1.653     1.652   
 2          48    -0.051    -1.423    -0.265     1.268     1.653     1.652   
 3          72    -0.138    -1.714    -0.406     1.173     1.653     1.652   
 4          96    -0.172    -1.919    -0.559     1.038     1.653     1.652   
 5         120    -0.196    -2.089    -0.721     0.906     1.653     1.652   
 6         144    -0.206    -2.233    -0.894     0.784     1.653     1.652   
 7         168    -0.186    -2.358    -1.066     0.677     1.653     1.652   
 8         192    -0.144    -2.477    -1.231     0.576     1.653     1.652   
 9         216    -0.086    -2.588    -1.378     0.482     1.653     1.652   
 10        240    -0.024    -2.693    -1.510     0.400     1.653     1.652   
 11        264     0.028    -2.792    -1.616     0.330     1.653     1.652   
 12        288     0.061    -2.883    -1.697     0.276     1.653     1.652   
 13        312     0.083    -2.962    -1.760     0.227     1.653     1.652   
 14        336     0.101    -3.029    -1.813     0.193     1.653     1.652   
 15        360     0.120    -3.086    -1.855     0.160     1.653     1.652   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0       1.65     1.074     0.849     3.638     6.290     0.002    -0.006   
 1       1.65     0.600    -2.136    -7.545     4.022    -0.138     0.121   
 2       1.65     0.513    -4.637   -14.992    -5.526    -0.060    -0.034   
 3       1.65     0.391    -6.447   -20.536   -13.806    -0.154    -0.069   
 4       1.65     0.260    -7.477   -24.640   -21.317    -0.200    -0.109   
 5       1.65     0.122    -8.278   -28.294   -28.482    -0.248    -0.022   
 6       1.65    -0.007    -8.903   -31.687   -35.291    -0.259     0.041   
 7       1.65    -0.142    -9.253   -34.560   -41.432    -0.296     0.116   
 8       1.65    -0.280    -9.389   -37.023   -46.980    -0.318     0.208   
 9       1.65    -0.415    -9.372   -39.076   -51.807    -0.332     0.318   
 10      1.65    -0.542    -9.326   -40.900   -56.087    -0.310     0.417   
 11      1.65    -0.659    -9.366   -42.557   -59.651    -0.310     0.528   
 12      1.65    -0.771    -9.507   -44.043   -62.602    -0.307     0.597   
 13      1.65    -0.876    -9.691   -45.333   -65.027    -0.298     0.679   
 14      1.65    -0.974    -9.859   -46.461   -67.032    -0.266     0.751   
 15      1.65    -1.062    -9.981   -47.366   -68.636    -0.237     0.816   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0     -0.071     0.005     0.002     0.010  
 1     -0.434    -0.031     0.016     0.252  
 2     -0.754    -0.036     0.103     0.199  
 3     -0.866    -0.048     0.037     0.110  
 4     -0.916     0.055     0.093     0.192  
 5     -0.884     0.055     0.086     0.168  
 6     -0.828     0.043     0.056     0.124  
 7     -0.720    -0.010     0.028     0.168  
 8     -0.565     0.067     0.082     0.159  
 9     -0.424     0.030     0.070     0.185  
 10    -0.259     0.012     0.037     0.152  
 11    -0.086     0.010     0.057     0.153  
 12     0.068     0.016     0.083     0.198  
 13     0.222     0.009     0.069     0.196  
 14     0.356    -0.013     0.050     0.208  
 15     0.483    -0.003     0.065     0.209  ,
 'VIEST126_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0    -0.219    -0.073     0.037     0.236     1.653     1.652   
 1          24     0.012    -0.848    -0.161     0.404     1.653     1.652   
 2          48    -0.076    -1.032    -0.326     0.488     1.653     1.652   
 3          72    -0.110    -1.151    -0.472     0.515     1.653     1.652   
 4          96    -0.137    -1.248    -0.607     0.498     1.653     1.652   
 5         120    -0.160    -1.338    -0.739     0.461     1.653     1.652   
 6         144    -0.171    -1.420    -0.865     0.421     1.653     1.652   
 7         168    -0.173    -1.491    -0.980     0.377     1.653     1.652   
 8         192    -0.175    -1.559    -1.089     0.322     1.653     1.652   
 9         216    -0.162    -1.632    -1.193     0.273     1.653     1.652   
 10        240    -0.135    -1.713    -1.291     0.243     1.653     1.652   
 11        264    -0.111    -1.783    -1.370     0.219     1.653     1.652   
 12        288    -0.113    -1.838    -1.426     0.181     1.653     1.652   
 13        312    -0.115    -1.898    -1.466     0.152     1.653     1.652   
 14        336    -0.145    -1.950    -1.486     0.129     1.653     1.652   
 15        360    -0.159    -1.996    -1.493     0.110     1.653     1.652   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0       1.65    -0.036    -0.056     1.511     3.276    -0.014    -0.006   
 1       1.65    -0.074    -0.065    -5.504    -4.459     0.047     0.032   
 2       1.65    -0.058    -0.998   -10.493   -10.433    -0.020     0.009   
 3       1.65    -0.019    -1.493   -14.068   -15.362    -0.074     0.048   
 4       1.65     0.015    -1.906   -16.984   -20.035    -0.101     0.058   
 5       1.65     0.032    -2.313   -19.653   -24.613    -0.092     0.140   
 6       1.65     0.035    -2.649   -22.087   -28.868    -0.070     0.216   
 7       1.65     0.015    -2.908   -24.142   -32.688    -0.070     0.297   
 8       1.65    -0.012    -3.137   -25.943   -36.393    -0.063     0.396   
 9       1.65    -0.039    -3.240   -27.500   -39.787    -0.070     0.473   
 10      1.65    -0.068    -3.326   -29.060   -42.804    -0.057     0.541   
 11      1.65    -0.099    -3.426   -30.450   -45.271    -0.048     0.617   
 12      1.65    -0.136    -3.636   -31.567   -47.391    -0.028     0.681   
 13      1.65    -0.178    -3.904   -32.560   -49.143    -0.008     0.764   
 14      1.65    -0.221    -4.383   -33.580   -50.619     0.035     0.819   
 15      1.65    -0.258    -4.685   -34.259   -51.622     0.039     0.870   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0     -0.071     0.010     0.002     0.010  
 1     -0.336    -0.011     0.010     0.220  
 2     -0.465    -0.009     0.055     0.222  
 3     -0.495    -0.011     0.062     0.189  
 4     -0.515     0.030     0.053     0.160  
 5     -0.489     0.033     0.061     0.158  
 6     -0.462     0.012     0.032     0.122  
 7     -0.408     0.002     0.028     0.125  
 8     -0.327    -0.010     0.027     0.160  
 9     -0.229     0.001     0.040     0.157  
 10    -0.144    -0.022     0.026     0.146  
 11    -0.031    -0.021     0.039     0.165  
 12     0.069    -0.016     0.043     0.177  
 13     0.192    -0.027     0.052     0.181  
 14     0.301    -0.051     0.040     0.210  
 15     0.386    -0.021     0.049     0.205  ,
 'VIESTENM_20200601002020081500T.scan':     %Previsao  psnm:000  temp:850  temp:500  temp:250  umes:925  umes:850  \
 0           0    -0.203     0.067     0.061     0.241     1.653     1.652   
 1          24    -0.015    -0.731    -0.029     1.327     1.653     1.652   
 2          48    -0.065    -0.939    -0.133     1.423     1.653     1.652   
 3          72    -0.140    -1.064    -0.229     1.402     1.653     1.652   
 4          96    -0.178    -1.153    -0.333     1.331     1.653     1.652   
 5         120    -0.213    -1.238    -0.452     1.246     1.653     1.652   
 6         144    -0.240    -1.318    -0.584     1.160     1.653     1.652   
 7         168    -0.236    -1.391    -0.715     1.081     1.653     1.652   
 8         192    -0.220    -1.467    -0.845     1.006     1.653     1.652   
 9         216    -0.189    -1.546    -0.969     0.936     1.653     1.652   
 10        240    -0.160    -1.620    -1.080     0.874     1.653     1.652   
 11        264    -0.138    -1.691    -1.166     0.819     1.653     1.652   
 12        288    -0.135    -1.756    -1.232     0.767     1.653     1.652   
 13        312    -0.136    -1.817    -1.275     0.723     1.653     1.652   
 14        336    -0.147    -1.869    -1.300     0.683     1.653     1.652   
 15        360    -0.159    -1.913    -1.315     0.649     1.653     1.652   

     umes:500  agpl:925  zgeo:850  zgeo:500  zgeo:250  uvel:850  uvel:500  \
 0       1.65     1.081     0.785     3.665     6.329    -0.013    -0.006   
 1       1.65     0.714     0.359    -3.857     9.071    -0.066     0.175   
 2       1.65     0.730    -0.497    -8.195     4.194     0.009     0.093   
 3       1.65     0.746    -1.317   -11.556    -0.623    -0.071     0.096   
 4       1.65     0.741    -1.771   -14.058    -5.228    -0.054     0.092   
 5       1.65     0.717    -2.222   -16.472   -10.071    -0.052     0.189   
 6       1.65     0.686    -2.663   -18.947   -14.970    -0.005     0.259   
 7       1.65     0.631    -2.894   -21.040   -19.390    -0.013     0.336   
 8       1.65     0.560    -3.015   -22.958   -23.591    -0.032     0.404   
 9       1.65     0.493    -3.038   -24.688   -27.458    -0.054     0.504   
 10      1.65     0.424    -3.098   -26.309   -30.939    -0.030     0.581   
 11      1.65     0.355    -3.221   -27.766   -33.828    -0.022     0.681   
 12      1.65     0.289    -3.452   -29.051   -36.285    -0.006     0.750   
 13      1.65     0.218    -3.727   -30.119   -38.202     0.009     0.819   
 14      1.65     0.146    -4.043   -31.009   -39.696     0.047     0.884   
 15      1.65     0.080    -4.331   -31.753   -40.899     0.075     0.942   

     uvel:250  vvel:850  vvel:500  vvel:250  
 0     -0.071     0.010     0.002     0.010  
 1     -0.338     0.017     0.021     0.196  
 2     -0.575    -0.053     0.079     0.186  
 3     -0.645    -0.044     0.072     0.135  
 4     -0.680     0.034     0.077     0.168  
 5     -0.650     0.041     0.113     0.157  
 6     -0.629    -0.004     0.057     0.091  
 7     -0.569    -0.008     0.036     0.102  
 8     -0.455     0.003     0.047     0.157  
 9     -0.341     0.006     0.056     0.151  
 10    -0.227    -0.029     0.032     0.121  
 11    -0.091    -0.029     0.044     0.148  
 12     0.028    -0.013     0.067     0.178  
 13     0.147    -0.026     0.061     0.184  
 14     0.252    -0.051     0.042     0.191  
 15     0.352    -0.036     0.055     0.208  }

No dicionário dTable, observe que foram carregadas as tabelas referente às estatísticas escolhidas (VIES, RMSE e ACOR). Para visualizar o dataframe da tabela, basta passar o nome da tabela como argumento do dicionário dTable, como em dTable['NOME_TABELA']. Veja o exemplo a seguir:

1
dTable['ACORX126_20200601002020081500T.scan']
%Previsao psnm:000 temp:850 temp:500 temp:250 umes:925 umes:850 umes:500 agpl:925 zgeo:850 zgeo:500 zgeo:250 uvel:850 uvel:500 uvel:250 vvel:850 vvel:500 vvel:250
0 0 0.999 0.997 1.000 0.999 0.250 0.154 0.071 0.997 1.000 1.000 1.000 0.991 0.997 0.998 0.984 0.995 0.997
1 24 0.981 0.986 0.997 0.992 0.228 0.137 0.069 0.984 0.996 0.999 1.000 0.923 0.970 0.979 0.871 0.948 0.958
2 48 0.964 0.978 0.994 0.985 0.216 0.123 0.064 0.964 0.990 0.997 0.998 0.888 0.943 0.955 0.806 0.897 0.908
3 72 0.937 0.968 0.989 0.977 0.203 0.108 0.059 0.941 0.979 0.994 0.996 0.840 0.906 0.922 0.726 0.826 0.837
4 96 0.906 0.959 0.983 0.968 0.196 0.098 0.053 0.917 0.965 0.988 0.993 0.787 0.860 0.882 0.629 0.733 0.743
5 120 0.868 0.949 0.976 0.958 0.190 0.090 0.047 0.896 0.947 0.982 0.988 0.734 0.809 0.838 0.532 0.626 0.638
6 144 0.829 0.942 0.970 0.950 0.187 0.085 0.042 0.878 0.928 0.974 0.984 0.683 0.758 0.795 0.444 0.520 0.534
7 168 0.791 0.934 0.964 0.942 0.184 0.081 0.037 0.862 0.909 0.967 0.979 0.637 0.710 0.752 0.372 0.419 0.425
8 192 0.753 0.929 0.958 0.936 0.182 0.077 0.033 0.849 0.890 0.960 0.974 0.595 0.668 0.717 0.302 0.322 0.324
9 216 0.718 0.924 0.953 0.930 0.182 0.076 0.029 0.838 0.871 0.953 0.970 0.560 0.630 0.684 0.243 0.235 0.234
10 240 0.691 0.921 0.949 0.926 0.179 0.075 0.027 0.827 0.857 0.947 0.966 0.534 0.597 0.654 0.200 0.168 0.163
11 264 0.672 0.918 0.946 0.923 0.177 0.074 0.024 0.819 0.846 0.943 0.964 0.518 0.575 0.633 0.173 0.130 0.123
12 288 0.660 0.916 0.944 0.919 0.176 0.072 0.022 0.812 0.840 0.940 0.962 0.502 0.554 0.613 0.158 0.104 0.100
13 312 0.648 0.915 0.941 0.917 0.177 0.071 0.021 0.806 0.833 0.938 0.960 0.488 0.537 0.598 0.146 0.091 0.088
14 336 0.632 0.912 0.939 0.915 0.177 0.071 0.019 0.800 0.825 0.934 0.958 0.476 0.525 0.588 0.129 0.067 0.073
15 360 0.624 0.911 0.937 0.914 0.177 0.071 0.019 0.794 0.820 0.932 0.956 0.469 0.514 0.578 0.118 0.054 0.060